
Teacher's Edition

world-en.weniv.co.kr | WENIV Corp.

Weniv World
Adventure
Game-based Python Learning Platform

Weniv World
Adventure
Game-based Python Learning Platform

Teacher's Edition

Resources 1

Resources

Usage Scope

You can access the resource through the Notion link below (Please note that the
short link may not work depending on the service status).

The PDF can be printed for use as a textbook without permission.

The Korean version of this e-book is available for free download on Ridibooks,
Kyobo Bookstore, YES24, Aladdin Bookstore, and Millie's Library.

Notion Link :
https://www.notion.so/paullabworkspace/7e691173fea444038981905d35b827c9?pvs=4

Short Link:

https://url.kr/927tlq

QR Code:

PDF:

You can download it from the notion page.

About Us

Preface

About Platform

01. Introduction 02. Weniv World Adventure

Appendix. Command Dictionary

Cat’s Resolution

Advent of Licat

Licat Heading to Skull Island

Amazing Taste!

Employee Promotion

Is This a Bank or a Fish Market?

Free Food Truck

Warehouse Integration

Let’s Automate!

Let’s Clean up and Organize!

Appendix

Command Dictionary

Bibliographic Data

01

About Us

Preface

About Platform

004

About Us 1

About Us
Hello,
This is Weniv Inc.

We specialize in creating ICT educational content and conducting online and offline software
(SW) courses. Our online courses operate under the name Jeju Coding Basecamp, derived
from our company's location in Jeju, South Korea.

Weniv Inc. aims to be a stepping stone, helping individuals navigate the ICT career paths,
professions, further education, and employment. We are committed to addressing challenges
faced by regional communities and young individuals, ensuring that everyone has access to
ICT education without discrimination based on location or resources. Through service
development, ICT education, and community activities, we collaborate with local communities
and youth to overcome these challenges.

With experience in various programs, including ‘Jeju Coding Basecamp,’ corporate training for
new hires, tertiary education, and K-12 education, we strive to make a positive impact in the
field of ICT.

005

Preface 1

Preface
Weniv World is an educational software designed to make Python programming more
accessible. Users can learn Python and develop computational thinking skills by solving
missions that involve controlling the protagonist, Licat, with simple commands.

For students, the installation process and login can be obstacles. To facilitate learning without
such difficulties, the platform provides a web service that can be accessed from anywhere
without the need for a separate login.

You can download both student and teacher manuals in PDF format from the website below.
We hope you enjoy an exciting Python learning experience with Weniv World.

Weniv World Beta

Python Coding Expedition to Weniv World

http://world-en.weniv.co.kr/

Weniv Notebook

Run Python in Weniv Notebook(code editor)

https://notebook.weniv.co.kr/

Weni World Beta

Weniv Notebook

006

About Platform

About Platform

1. Weniv World

Weniv World Beta

Python Coding Expedition to Weniv World

http://world-en.weniv.co.kr/

1. Weniv World

1.1. Notebook

1.2. World

1.2.1 Walls

1.2.2 Items

1.2.3 Size

1.2.4 Speed

1.2.5 Functions and Variables Lists

1.2.6 World Initialization

1.3. Story

1.4. Terminal

2. Weniv Notebook

007

About Platform

The platform is divided into four sections.

1. Notebook: You can write code in this section.

2. World: Executes code to move Licat.

3. Story: Provides story-based missions.

4. Terminal: Outputs results of the code.

1.1. Notebook
This is a space where you can write and execute code. You can run the code by pressing the
Run button at the top left corner of the code block. On Windows, you can use the Shift +
Enter or Alt + Enter shortcut to execute the code, while on macOS, you can use the Shift +
Enter or Option + Enter shortcut.

The code can be written in multiple cells. You can add a code cell using the Add Code button at
the top of the notebook area or the Add Code button that appears at the bottom of each code
cell when you hover over it. To delete a code cell, you can click the X button on the right side
of each code cell. Please be aware that deleted cells cannot be recovered.

008

About Platform

You can download the written code as a file. Clicking the Download Notebook button (❶), you can
download the entire code as a .ipynb file extension. The downloaded file can be executed in
Jupyter Notebook or Google Colab. You can also import the .ipynb file and use it in Weniv
World with Upload Notebook button. Code can be downloaded and uploaded on a cell-by-cell
basis, and you can click the button on the right side of each code cell (❷) to download it as a
.py file extension.

1.2. World
The World section is a space that contains information about the world, including walls, items,
world size, character details, and so on. You can see the results of the executed code in the
World section.

1.2.1 Walls
Walls are obstacles that should be detoured. You cannot pass any type of wall, including the
default wall, door, and fence. Doors can be removed using the open_door() command. The
fence is functionally identical to the wall, but in different colors.

To add a wall, choose the type of wall to add, and when you hover the mouse over the world,
the positions where walls can be added are displayed like below. Click on the desired spot to
build the wall.

009

About Platform

Select "delete" in the menu, hover over the wall to be deleted (highlighted in red), and click to
remove it.

1.2.2 Items
Items are used in various missions and come in six types: fish-1 , fish-2 , fish-3 , diamond ,
apple , goldbar .

To add items, use the set_item() command or select an item and click on the world. Item
information in the world is stored in the item_data variable.

010

About Platform

When there is an item at the character's location, you can pick it up with the pick() command.
You can also use the put(item-name) command to place an item you are carrying under the
character's feet. The character's list of items can be checked using the item() command.

1.2.3 Size
You can adjust the size of the world. The x-axis represents rows, and the y-axis represents
columns.

1.2.4 Speed
It indicates the speed of the character. A higher value executes the code at a faster speed.

1.2.5 Functions and Variables Lists
You can see the description of each function and variable when you mouse over each item. It
also provides explanations about functions that require specific modules. Clicking on each
item copies the code to the clipboard for use.

011

About Platform

1.2.6 World Initialization
This button initializes the information in the world. You can reset wall information, items, size,
and character information. Please note that the initialized world information cannot be
restored, so if you need to keep it, it is recommended to download it before initializing.

1.3. Story
You can activate Story Mode by clicking the Story button (❶). When Story Mode is active,
editing in the world (adding walls or items, changing size, etc) becomes disabled.

Clicking on each story's right button (❸) reveals Story , Mission , and Hints . The hints are
more extensive than the actual code used in the mission.

012

About Platform

1.4. Terminal
This is an area where you can check the output results of the code. You can see results or
error messages using the print() function. The output displayed in the terminal can be
downloaded or cleared. If you click the init terminal button, all text will disappear.

2. Weniv Notebook

013

About Platform

Weniv Notebook provides a web environment where you can execute Python without logging
in. You can run it by clicking the Run button on the left or using the shortcut Shift + Enter or
Alt + Enter . The usage is the same as in Weniv World.

014

02

Cat’s Resolution

Advent of Licat

Licat Heading to Skull Island

Amazing Taste!

Employee Promotion

Is This a Bank or a Fish Market?

Free Food Truck

Warehouse Integration

Let’s Automate!

Let’s Clean up and Organize!

015

Cat’s Resolution 1

Cat’s Resolution

1. Chapter Objectives
move : You can move the character one space using the move() function.

pick : You can pick up an item under the character using the pick() function.

say : The character can speak using the say() function.

2. Story
Weniv World is a world of ruthless survival. Powerful ones dominate, and the weak are
stripped and starved of hunger. It is also a place where magic and machinery coexist.

Cat is a commoner who runs a fish market on the outskirts of Weniv World. In the early
morning, he ventures into the treacherous sea to catch fish on behalf of his ailing mother, and
he sells the fish in the afternoon. He is an extremely ordinary boy who repeats this life every
day.

“Please take care of this fish market, my son…”

His mothers' illnesses worsened. In Weniv World, however, the hospital is a place only nobles
can access. It’s a brutal place for commoners where even death goes unnoticed.

"What I need to do best now is catch and sell fish, meow!"

Cat decided to do what he could. He got up every day no matter how hard it was. He tried to
keep his mind not to show his weakness.

"I'll build a hospital that even commoners can come, meow!"

Cat got healthy food and medicine with the money he earned every day to take care of his sick
mother. He also trained himself to catch more fish and explored difficult skills day and night.

1. Chapter Objectives

2. Story

2.1 Mission

2.2 Hints

3. Solution

4. Answer Code

016

Cat’s Resolution 2

As time went on, his skills improved day by day. No one in Weniv World could catch as many
fish as Cat.

2.1 Mission
Catch all the fish and return to the first spot, then say "hello, world!" Use the say function
instead of the print function.

2.2 Hints
Complete the mission by combining the codes below.

mission_start()

mission_end()

move()

turn_left()

repeat(2, move)

pick()

say('hello world!')

3. Solution
If there is a function using the world (where the character moves) in the code cell to be
executed, the code must be used as shown below. If the following code is not included, errors
such as delayed output of print or delayed movement of the character may occur.

mission_start()

Code using the world

mission_end()

First, let's move one space as follows.

mission_start()

move()

mission_end()

017

Cat’s Resolution 3

Write the above code in the notebook and execute it by clicking the Run button or pressing
Shift + Enter or Alt + Enter shortcut.

You can see that Cat has moved one space as shown above. Now, let's try picking up the item
below. Add another code cell and execute the pick() function.

You can see that one fish has been picked up as shown above. The notebook should look like
this:

Now, press the reset button to return to the initial state of the story. Go back to the first
notebook and enter the following code to move forward and pick up all the fish.

018

Cat’s Resolution 4

mission_start()

move()

pick()

move()

pick()

move()

pick()

move()

pick()

mission_end()

Now you need to return to the starting point. Using turn_left() , you will rotate 90 degrees to
the left. If you execute turn_left() twice, you will face the back. Add a cell and enter the
following code:

mission_start()

turn_left() # Rotate 90 degrees to the left

turn_left()

mission_end()

Now, you just need to move forward four times. Enter the following in the next cell.

mission_start()

move()

move()

move()

move()

mission_end()

Now you need to say "hello, world!" Enter the following code. say() and print() do not
require mission_start() and mission_end() . say() outputs text in a speech bubble of a
character, while print() outputs to the terminal.

say("hello, world!")

Using repeat() can provide a more efficient solution. It can be used in the form of repeat(number
of repetitions, function name) . For example, the last code where move() is used four times can
be easily shortened as follows:

mission_start()

repeat(4, move)

019

Cat’s Resolution 5

mission_end()

4. Answer Code
Initialize the world and execute the code below.

mission_start()

move()

pick()

move()

pick()

move()

pick()

move()

pick()

repeat(2, turn_left)

repeat(4, move)

say('hello, world!')

mission_end()

020

Advent of Licat 1

Advent of Licat

1. Chapter Objectives
move : You can move the character one space using the move() function.

pick : You can pick up an item under the character using the pick() function.

say : The character can speak using the say() function.

2. Story
Cat's mother eventually couldn't overcome her worsening condition. Holding back tears, Cat
did his best to show a smile on her final journey. Nevertheless, he was in full despair for being
helpless to do anything.

Not to let sorrow pull him down, he kept to stay busy. He had lost his family, but he wanted to
protect someone else's family by building a hospital. As time passed, Cat grew. He could catch
more fish than anyone else, and there was no shop in town larger than Cat’s fish market.
However, the hospital remained an unachievable dream.

”At this rate, it would take 100 million and 3299 years to build a hospital,
meow…”

Cat decided to enter Lion Town to earn a huge amount of money. Lion Town is a place where
only royal and noble lions can live. For commoners, only selected individuals could enter this
town.

After a lot of thought, Cat came up with a clever idea.

1. Chapter Objectives

2. Story

2.1 Mission

2.2 Hints

3. Solution

4. Answer Code

021

Advent of Licat 2

"I can just wear a lion mask and get in, meow!”

He called himself Licat after Cat wearing a lion mask. Licat thought it would be easy to enter
Lion Town, but the gatekeepers were not as lenient as he expected. Denied entry after a strict
inspection, he had to agonize again.

At that moment, a staff named Mura came to give him information. Mura looked calm and cold-
hearted, so it was difficult to know what she was thinking. But every time she said a word, she
was of great help to Licat.

"There is a secret passage to Lion Town. If you pass there, it would lead
to an outskirt of Lion Town. There are few people and they don't conduct
inspections, so you should be able to live there comfortably in those
clothes. I hope you achieve the dream you want.”

Licat expressed gratitude to Mura and moved to the location. The secret passage was at the
end of a complex maze. When Licat placed his hand on the door, it began to speak!

Licat in a lion mask

022

Advent of Licat 3

"This door is only for those with the qualifications of the king!
From now on, I will verify your qualifications! Grrrr!!”

2.1 Mission
The key to the talking door, the diamond , has been generated in the maze. Find the diamond
and shout 'Open the door!'.

Licat in front of the talking door

023

Advent of Licat 4

2.2 Hints
Complete the mission by combining the codes below.

mission_start()

mission_end()

move()

turn_left()

repeat(2, move)

pick()

say('hello world!')

open_door()

3. Solution

024

Advent of Licat 5

To complete the mission, you should go through the following steps: move forward 3 spaces,
turn right, move forward 2 spaces, turn right again, open the door, move forward 1 space, and
pick up the diamond.

Let's proceed step by step with what we've learned so far. It is recommended to create a
separate cell for each step. First, let's move forward 3 spaces.

mission_start()

repeat(3, move)

mission_end()

In case this code is unfamiliar, executing the following will produce the same result. If you
execute the code below after running the above code, the character will go out of the map
since move() is executed a total of 6 times. In this case, an alert message will appear, so
please use only one of these.

mission_start()

move()

move()

move()

mission_end()

Licat can rotate only to the left using turn_left() . So, how can he face to the right? If he
rotates to the left three times, he can face to the right. Later, we are going to learn about
functions and modules to create or add turn_right() . For now, let's rotate to the right by
repeating turn_left() three times.

Before After

025

Advent of Licat 6

mission_start()

repeat(3, turn_left)

mission_end()

Now, move forward 2 spaces to make the character face the door.

mission_start()

repeat(2, move)

repeat(3, turn_left)

mission_end()

The blue wall in front of the character represents the door. To pass through the door, you need
to use the open_door() command to open it. Once the door is open, it is deleted, and it cannot
be closed again.

mission_start()

open_door()

mission_end()

Now, let’s move forward 1 space, pick up the diamond, and say "Open the door!” .

mission_start()

move()

pick()

say('Open the door!')

mission_end()

4. Answer Code
Initialize the world and execute the code below.

mission_start()

repeat(3, move)

repeat(3, turn_left)

repeat(2, move)

repeat(3, turn_left)

open_door()

move()

pick()

say('Open the door!')

mission_end()

026

Licat Heading to Skull Island 1

Licat Heading to Skull Island

1. Chapter Objectives
variable : You can assign a value to a variable.

print : You can use print() to output a value to the terminal.

type : You can check the type of a variable using type() .

2. Story
After successfully sneaking into Lion Town, Licat was able to quickly settle down. The reason
is that he is one of the brave fishermen who can catch fish around the Skull Island, where the
most fish are caught in Weniv World. As the name implies, Skull Island had so many reefs and
strong currents that countless fishermen lost their lives.

1. Chapter Objectives

2. Story

2.1 Mission

2.2.1 Hints

2.2.2 Intermediate-Level Hints

3. Solution

3.1 Variables

3.2 Arithmetic Operation

3.2 Solution

4. Answer Code

5. Advanced Code

027

Licat Heading to Skull Island 2

Licat grasped the movement of fish, made a map, added iron plates below to prevent the boat
from sinking on the reefs, and improved the net with a better rope.

"Now, it’s time to sail, meow!"

2.1 Mission
Catch all the fish while avoiding the maze. Then output the number of caught fish to the
terminal in the form of 'Licat caught 3 fish!'.

Licat heading to Skull Island

028

Licat Heading to Skull Island 3

2.2.1 Hints
Complete the mission by combining the codes below.

mission_start()

mission_end()

move()

turn_left()

repeat(2, move)

pick()

print('hello world!')

print('hello', 'world')

print(f'hello world')

item()

item()['fish-1']

2.2.2 Intermediate-Level Hints

029

Licat Heading to Skull Island 4

if

while

in

character_data[0]['x']

character_data[0]['y']

item_data

3. Solution

3.1 Variables
Variables are used when you want to represent a value. To use a variable, you need to give it
a name and assign a value using the = symbol. The = symbol is called the assignment
operator.

Let's declare a variable to represent the number of fish. Using variables makes it easy to
retrieve values.

count = 0

print(count)

Must-Know Rules for Variable Names

1. Variable names must start with an English letter, or an underscore _ .

2. Uppercase and lowercase letters are distinct. For example, "Apple" and "apple"
are different variable names.

3. Avoid using reserved keywords already used in Python. Words like "for" or "def"
fall into this category.

4. Variable names cannot contain spaces. If you want to separate words, use
underscores (snake_case) or capitalize each word (camelCase). In Python,
using underscores is the standard style. (e.g., count_fish)

3.2 Arithmetic Operation
In this problem, you need to understand arithmetic operations to get the number of caught fish.
Arithmetic operations include addition, subtraction, multiplication, division, and remainder. The
explanation for each functionality is provided in comments below. Text following the # symbol

030

Licat Heading to Skull Island 5

on the right side of the code won't be executed. These comments are called annotations and
are used to add explanations to the code.

count = 10

print(count + 3) # Addition

print(count - 3) # Subtraction

print(count / 3) # Division (float)

print(count // 3) # Division (integer, floor)

print(count * 3) # Multiplication

print(count ** 3) # Exponentiation

print(count % 3) # Modulo

This * character represents multiplication, and ** represents exponentiation. If count is
currently 10, count ** 3 means multiplying 10 three times (10 * 10 * 10).

print(count * 3) # Multiplication

print(count ** 3) # Exponentiation

There are two types of division in Python. Using a single slash (/) will output a quotient with a
float datatype, such as 3.333... . This form with decimals is referred to as a float. If you use
two slashes (//), it will output an integer result, like 3 . This form, without decimals, is called
an integer.

print(count / 3) # Division (float)

print(count // 3) # Division (integer, floor)

You can check the type of each with the following.

print(type(3.33))

print(type(3))

The remainder operation gives you the remainder when dividing. When dividing 10 by 3, the
quotient is 3, and the remainder is 1, so it prints 1.

print(count % 3) # Modulo

031

Licat Heading to Skull Island 6

Now let's go back to the code where the fish variable was declared.

count = 0

In the code above, if you want to increase the count by 1 each time you catch a fish, you need
the following code. The addition is calculated before the assignment. Therefore, the result of
count + 1 (which is 1) is stored in the count.

count = count + 1

This code can be shortened as shown below. Since the shortened code might not be familiar,
we'll mainly use the former code for now. However, the following code is more common in
working-level.

count += 1

3.2 Solution

This problem doesn't use automated code. Later, you will be able to combine functions like
front_is_clear() to check if the front is empty, on_item() to check if there's an item beneath,
and while loops to solve it with a more elegant code.

First, let's try to get all the fish in the first row. Here, we need to count the fish, so we are going
to declare a variable to store the number of fish we catch. If you don't plan to use the world,

Before After

032

Licat Heading to Skull Island 7

exclude mission_start() and mission_end() .

count = 0

As learned before, you can perform arithmetic operations on declared variables. Now, let's
increment the variable when catching fish. If you haven't declared count = 0 above, please
uncomment count = 0 and execute the code below.

mission_start()

count = 0

move()

pick()

count = count + 1

print(count)

mission_end()

When you run the above code, the character would have caught a fish after moving one
space, and the terminal would have printed 1. You can catch the rest of the fish in the same
way. Let's write the code for catching one more fish and turning right.

mission_start()

repeat(2, move)

033

Licat Heading to Skull Island 8

pick()

count = count + 1

move()

repeat(3, turn_left)

mission_end()

If you've caught all the fish, you should output in the form of Licat caught 3 fish! using the
print() function. You can print the answer with the following code:

count = 3

print('Licat caught 3 fish!')

print('Licat caught ', 3, ' fish!')

print('Licat caught ', count, ' fish!')

print(f'Licat caught {count} fish!')

All the above outputs will be the same, saying Licat caught 3 fish! . The method used in the
last line is called f-string formatting. It allows you to directly insert variables for more
convenient use and is commonly used in working-level.

4. Answer Code
Initialize the world and execute the code below.

mission_start()

count = 0

move()

pick()

count = count + 1

repeat(2, move)

pick()

count = count + 1

move()

repeat(3, turn_left)

repeat(2, move)

pick()

count = count + 1

repeat(2, move)

repeat(3, turn_left)

repeat(3, move)

034

Licat Heading to Skull Island 9

pick()

count = count + 1

move()

pick()

count = count + 1

repeat(3, turn_left)

repeat(2, move)

pick()

count = count + 1

repeat(2, move)

print(f'Licat caught {count} fish!')

mission_end()

5. Advanced Code
It is an advanded level of code. A description is not given here because it requires a compound
description of several concepts.

def move_pick():

 move()

 if on_item():

 pick()

mission_start()

repeat(4, move_pick)

repeat(3, turn_left)

repeat(4, move_pick)

repeat(3, turn_left)

repeat(4, move_pick)

repeat(3, turn_left)

repeat(4, move_pick)

repeat(3, turn_left)

print(f'Licat caught {item()["fish-1"]} fish!')

mission_end()

from modules import turn_left_until_clear, turn_right

mission_start()

035

Licat Heading to Skull Island 10

visited = []

while True:

 visited.append((character_data[0]['x'], character_data[0]

['y']))

 if front_is_clear():

 move()

 while on_item():

 pick()

 else:

 turn_right()

 move()

 if (character_data[0]['x'], character_data[0]['y']) in visite

d:

 break

print('Licat caught ', item()['fish-1'], ' fish!')

mission_end()

036

Amazing Taste! 1

Amazing Taste!

1. Chapter Objectives
Arithmetic Operators : You can freely perform addition, subtraction, division, and multiplication.

Dictionary : You can understand the dictionary data type and extract values using keys.

Print : You can format the output in the desired form using f-string syntax.

2. Story
The fish caught on Skull Island is so plump and delicious that its popularity has been
increasing as days go by. Even people from other villages were willing to pay more to buy the
fish.

1. Chapter Objectives

2. Story

2.1 Mission

2.2 Hints

3. Solution

3.1 Dictionary

3.2 Solution

4. Answer Code

5. Advanced Code

037

Amazing Taste! 2

Today, let's calculate how much revenue we can make when all the displayed fish are sold.

2.1 Mission

Pick up all the fish in the market and calculate how much revenue can be achieved when
selling fish-1 for 1000 nodes, fish-2 for 2000 nodes, and fish-3 for 3000 nodes. Output the
result as shown below in the terminal. The count should be printed using item() , and the total
should be the value obtained by multiplying price and count .

type count price total

fish-1 2 1000 2000

fish-2 3 2000 6000

fish-3 5 3000 15000

total 23000

Contemplating Licat

038

Amazing Taste! 3

2.2 Hints
Complete the mission by combining the codes below.

mission_start()

mission_end()

move()

repeat(2, move)

pick()

print('hello world!')

print('hello', 'world')

print(f'hello world')

item()

item()['fish-1']

10 + 10

10 - 3

10 / 3

10 // 3

10 * 3

10 ** 3

3. Solution

3.1 Dictionary
A dictionary consists of pairs of keys and values. By using this data type, you can retrieve
values using the key. For example, d['one'] will output 1, and d['two'] will output 2.

d = {'one': 1, 'two': 2}

d['one']

d['two']

When you check the data type of variable d using the type() function, it will output <class
'dict'> . It is called a dictionary.

d = {'one': 1, 'two': 2}

type(d)

Values in a dictionary can be modified.

d = {'one': 1, 'two': 2}

d['one'] = 100

039

Amazing Taste! 4

d

The result of the above code is {'one': 100, 'two': 2} .

3.2 Solution

This problem focuses on learning arithmetic operations and the dictionary data type rather
than moving the character in the world. First, let's pick up all the fish while moving forward.

mission_start()

move()

repeat(2, pick)

move()

repeat(5, pick)

move()

repeat(10, pick)

mission_end()

We can use the item() function to see the picked-up items. In a notebook, when executing a
variable or function without print() , the result is displayed right below.

item()

As you can see, the output result is enclosed in curly brackets. It shows that there are two fish-
1, five fish-2, and ten fish-3.

Now, let's try to print as follows:

Before After

040

Amazing Taste! 5

type count price total

fish-1 2 1000 2000

fish-2 3 2000 6000

fish-3 5 3000 15000

total 23000

The above code can be printed as follows:

print('type count price total')

print('fish-1 2 1000 2000')

print('fish-2 3 2000 6000')

print('fish-3 5 3000 15000')

print('total 23000')

Let's use the variables we can use here. We can calculate and insert the number of caught
fish and each total. Here, item() is a dictionary. It looks a bit different from what we've learned
so far. I'll explain this format further when we learn about functions later.

print(f'type count price total')

print(f'fish-1 {item()["fish-1"]} 1000 {item()["fish-

1"] * 1000}')

print(f'fish-2 {item()["fish-2"]} 2000 {item()["fish-

2"] * 2000}')

print(f'fish-3 {item()["fish-3"]} 3000 {item()["fish-3"]

* 3000}')

We haven't calculated the sum yet. The code looks very complex, so it is recommended to
calculate in advance and then insert the variables. When naming variables, writing in a way
that you can easily understand what value it represents will increase readability. Readability is
a very important factor in coding. It refers to how easily and clearly code can be understood
and interpreted. For instance, fish1_count represents the number of fish-1, and fish_price_all
represents the total price of every fish.

fish1_count = item()["fish-1"]

fish2_count = item()["fish-2"]

fish3_count = item()["fish-3"]

fish1_price = fish1_count*1000

fish2_price = fish2_count*2000

fish3_price = fish3_count*3000

fish_price_all = fish1_price + fish2_price + fish3_price

print(f'type count price total')

print(f'fish-1 {fish1_count} 1000 {fish1_price}')

041

Amazing Taste! 6

print(f'fish-2 {fish2_count} 2000 {fish2_price}')

print(f'fish-2 {fish3_count} 3000 {fish3_price}')

print(f'total {fish_price_all }')

4. Answer Code
Initialize the world and execute the code below.

mission_start()

move()

repeat(2, pick)

move()

repeat(5, pick)

move()

repeat(10, pick)

item()

fish1_count = item()["fish-1"]

fish2_count = item()["fish-2"]

fish3_count = item()["fish-3"]

fish1_price = fish1_count*1000

fish2_price = fish2_count*2000

fish3_price = fish3_count*3000

fish_price_all = fish1_price + fish2_price + fish3_price

print(f'type count price total')

print(f'fish-1 {fish1_count} 1000 {fish1_price}')

print(f'fish-2 {fish2_count} 2000 {fish2_price}')

print(f'fish-2 {fish3_count} 3000 {fish3_price}')

print(f'total {fish_price_all }')

mission_end()

5. Advanced Code
It is an advanded level of code. A description is not given here because it requires a compound
description of several concepts.

The code below is only printing the final sum.
Please write the code to match the output format.

042

Amazing Taste! 7

mission_start()

while front_is_clear():

 move()

 while on_item():

 pick()

fish = ['fish-1','fish-2','fish-3']

price = [1000, 2000, 3000]

result = 0

for i in range(len(fish)):

 key = fish[i]

 if key in item():

 result += price[i]*item()[key]

print(result)

mission_end()

043

Employee Promotion 1

Employee Promotion

1. Chapter Objectives
String : You can understand the characteristics of strings.

Indexing : You can call a character using string indexing.

Slicing : You can extract specific characters by slicing a string.

Method : You can change a string in various ways using string methods.

2. Story
The small fish market has changed its name to CatsFish and has become a corporation. Due
to such rapid growth, Lion Town's nobles started to get jealous.

Several nobles sent spies to break down Licat. He already knew the spy because Mura had
informed him who the spy was.

'How do you plan to handle the spy?'

“She'll come back even if we send her out, and she'll hide even more
secretly. So let's rather keep her close!”

Licat had the goal of establishing a hospital that anyone could use. He knew that the hospital
could not be established just with the money. Most people in Weniv World should be on his
side. Even the enemy.

His eyes sparkled.

1. Chapter Objectives

2. Story

2.1 Mission

2.1.1 Basic Code

2.1.2 Output

2.2 Hints

3. Solution

3.1 String

3.2 Solution

4. Answer Code

044

Employee Promotion 2

2.1 Mission
Take the input string below and appoint Mura as the COO and Hati as the CTO. Copy the
template code and modify it so that the output statement is displayed on the terminal.

2.1.1 Basic Code

announcement = 'CEO Licat, Team Lead Mura, Manager Hati'

2.1.2 Output

'Appointing as COO Mura, CTO Hati - CEO Licat'

2.2 Hints
Complete the mission by combining the codes below.

mission_start()

mission_end()

'hello' + 'world'

'hello'[0]

'1, 2, 3'.replace(',', '')

'hello world'[2:6]

3. Solution

3.1 String
A string(str) represents characters enclosed in single or double quotation marks. Strings have
an order, so you can use position numbers to output specific character as shown below. One
thing to note is that spaces are also recognized as a character. In print(s[5]) , it’s not that
there’s no result value. A space is printed.

s = 'hello world'

print(s[0]) # h

print(s[1]) # e

print(s[2]) # l

print(s[3]) # l

print(s[4]) # o

print(s[5]) #

print(s[6]) # w

print(s[7]) # o

045

Employee Promotion 3

print(s[8]) # r

print(s[9]) # l

print(s[10]) # d

If you want to extract only "hello", you can use the following.

s = 'hello world'

print(s[0], s[1], s[2], s[3], s[4])

print(s[0] + s[1] + s[2] + s[3] + s[4])

However, expressing like this seems very cumbersome.

While you can get the character value at a specific position using index numbers in strings,
you can also specify a range to extract a portion of the string. Therefore, the code to extract
only "hello" can be expressed as follows.

s = 'hello world'

s[0:5]

With the above code, we can get from 0 to the 5th element (not included). This is called
slicing.

Methods make it easier to manipulate the corresponding data type. You can check it with
dir() and is often used together with type() .

s = 'hello world'

print(type(s))

print(dir(s))

By doing this, you can see that a lot of code is printed as shown below.

<class 'str'>

['__add__', '__class__', '__contains__', '__delattr__', '__dir__',

'__doc__', '__eq__', '__format__', '__ge__', '__getattribute__',

'__getitem__', '__getnewargs__', '__getstate__', '__gt__', '__hash

__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len

__', '__lt__', '__mod__', '__mul__', '__ne__', '__new__', '__reduc

e__', '__reduce_ex__', '__repr__', '__rmod__', '__rmul__', '__seta

ttr__', '__sizeof__', '__str__', '__subclasshook__', 'capitalize',

'casefold', 'center', 'count', 'encode', 'endswith', 'expandtabs',

'find', 'format', 'format_map', 'index', 'isalnum', 'isalpha', 'is

ascii', 'isdecimal', 'isdigit', 'isidentifier', 'islower', 'isnume

ric', 'isprintable', 'isspace', 'istitle', 'isupper', 'join', 'lju

st', 'lower', 'lstrip', 'maketrans', 'partition', 'removeprefix',

046

Employee Promotion 4

'removesuffix', 'replace', 'rfind', 'rindex', 'rjust', 'rpartitio

n', 'rsplit', 'rstrip', 'split', 'splitlines', 'startswith', 'stri

p', 'swapcase', 'title', 'translate', 'upper', 'zfill']

Something with double underscores indicates magic methods, and without underscores, they
are referred to as methods. Magic methods are defined to specify the characteristics of this
data type. For example, __add__ enables the concatenation of strings. Methods are used to
conveniently handle the respective data type. For instance, the __upper__ method transforms
all characters into uppercase. Below are commonly used methods and their definitions.

count : Counts the number of occurrences of the specified characters in the string.

s = 'hello world'

s.count('l') # Outputs 3 as there are three 'l' characters.

find: Returns the index of the specified value. Returns -1 if the value is not found.

s = 'hello world'

s.find('l') # Returns 2 as the index of first 'l' is 2.

index: Returns the index of the specified value. Raises an error if the value is not found.

s = 'hello world'

s.index('l') # Returns 2 as the index of first 'l' is 2.

isdigit: Checks if the string contains only digits.

s = 'hello world'

s.isdigit() # Returns False as it is not composed of digits.

s = '10'

s.isdigit() # Returns True as it consists of digits.

join: Concatenates into a single string using the specified separator.

a = 'hello'

b = 'world'

'-'.join([a, b])

Outputs 'hello-world' by connecting strings with a preceding

character.

join must have one value. To use multiple values, you can group them with brackets
([]). The data type grouped in brackets like this is called a list.

lower: Converts the string to lowercase.

047

Employee Promotion 5

s = 'Hello World'

s.lower() # hello world

upper: Converts the string to uppercase.

s = 'Hello World'

s.upper() # HELLO WORLD

split: Splits the string into a list based on the specified delimiter.

s = 'hello world'

s.split(' ') # ['hello', 'world']

s = '064-000-0000'

s.split('-') # ['064', '000', '0000']

replace: Replaces a text with the specified string.

s = 'hello world'

s.replace('hello', 'hi') # hi world

strip: Removes front and back whitespaces.

s = ' hello world '

s.strip() # hello world

3.2 Solution
This mission doesn't need to move the world. First, let's change 'Team Lead' and 'Manager' to
'COO' and 'CTO', respectively. Since the code does not move the world, mission_start() is not
needed.

announcement = 'CEO Licat, Team Lead Mura, Manager Hati'

print(announcement.replace('Team Lead', 'COO'))

print(announcement)

Using the replace method as shown above changes the output, but the announcement itself
does not change. Therefore, you need to put it back into the announcement as follows:

announcement = 'CEO Licat, Team Lead Mura, Manager Hati'

announcement = announcement.replace('Team Lead', 'COO')

print(announcement)

048

Employee Promotion 6

Repeat this process:

announcement = 'CEO Licat, Team Lead Mura, Manager Hati'

announcement= announcement.replace('Team Lead', 'COO')

announcement= announcement.replace('Manager', 'CTO')

print(announcement)

Remove unnecessary characters at the beginning (CEO Licat,) using slicing, and add it at the
end like below.

print(f'Appointing as {announcement[11:]} - {announcement[:9]}')

4. Answer Code
announcement = 'CEO Licat, Team Lead Mura, Manager Hati'

announcement = announcement.replace('Team Lead', 'COO')

announcement = announcement.replace('Manager', 'CTO')

print(f'Appointing as {announcement[11:]} - {announcement[:9]}')

049

Is This a Bank or a Fish Market? 1

Is This a Bank or a Fish Market?

1. Chapter Objectives
Comparison Operation : You can perform comparison operations.

Built-in Function : You can understand and utilize various built-in functions.

List : You can understand the structure of list and utilize them.

2. Story
Licat wanted to establish a hospital, but he thought earning money could not be the only goal
of CatsFish Inc . He believed that the company's goal was to produce value together, and
above all, the happiness of employees.

To make them happy, Licat made efforts to secure more spare time and not to let them work
late into the night and on weekends.

Therefore, they needed a productivity improvement. How could productivity be increased?
How could more be produced in less time and more rest be secured?

"It's a system! We need to grow together by changing the system!”

The size of the company became too big to change the whole system, so they decided to
change the small part first.

First of all, they took a day off when the fish were sold least. And on days when there were the
most sales, they held events so that they could earn more profits.

Help Licat establish the system of CatsFish !

1. Chapter Objectives

2. Story

2.1 Mission

2.1.1 Output

2.2 Hints

3. Solution

3.1 List

3.2 Built-in Functions

3.3 Solution

4. Answer Code

050

Is This a Bank or a Fish Market? 2

2.1 Mission
Each cell represents the amount of money that fish were sold on Monday, Tuesday,
Wednesday, Thursday, and Friday. Fish has not been sold yet on Friday, so it remains as fish
only. The gold bar is 100,000 nodes, and fish-3 is 3,000 nodes.

1. Pick up all the gold bars sold each day and store them in a list.

2. What is the minimum amount sold on Monday, Tuesday, Wednesday, Thursday, and
Friday? Use min to print the minimum amount of money on the terminal.

3. On which day was the most sold? Print the day on the terminal. An event will be held on
this day.

4. On which day was the least sold? Print the day on the terminal. On this day, the store is
closed.

2.1.1 Output

Minimum sales: 30000

Event day: Monday

Day off: Friday

2.2 Hints
Complete the mission by combining the codes below.

mission_start()

mission_end()

l.append()

l.index()

max(1, 2, 3)

min(1, 2, 3)

sum([1, 2, 3])

move()

repeat(2, move)

pick()

print('hello world!')

item()

item()['fish-3']

item()['goldbar']

10 + 10

10 * 3

10 > 20

30 < 10

10 >= 5

051

Is This a Bank or a Fish Market? 3

3 == 3

3 != 5

5 <= 10

3. Solution

3.1 List
A list is a mutable data type with an order.

l = [10, 20, 30]

l[0] = 1000

l # [1000, 20, 30]

Similar to the string data type, you can use indexing to access a specific element and replace
it with another value. In the example above, the value at index 0 is replaced with 1000.

As a list has an order, you can slice it as below.

l = [10, 20, 30, 40, 50, 60, 70]

l[2:4] # [30, 40]

Let's look at what methods are available using the type and dir functions.

l = [10, 20, 30]

print(type(l))

print(dir(l))

Here are the output results:

<class 'list'>

['__add__', '__class__', '__class_getitem__', '__contains__', '__d

elattr__', '__delitem__', '__dir__', '__doc__', '__eq__', '__forma

t__', '__ge__', '__getattribute__', '__getitem__', '__getstate__',

'__gt__', '__hash__', '__iadd__', '__imul__', '__init__', '__init_

subclass__', '__iter__', '__le__', '__len__', '__lt__', '__mul__',

'__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '_

_reversed__', '__rmul__', '__setattr__', '__setitem__', '__sizeof_

_', '__str__', '__subclasshook__', 'append', 'clear', 'copy', 'cou

052

Is This a Bank or a Fish Market? 4

nt', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sor

t']

As shown above, the data type is called 'list.' Similar to string, it has both magic methods and
regular methods. Below are commonly used methods.

append: Adds a value to the end.

l = [10, 20, 30, 40, 50]

l.append(60) # [10, 20, 30, 40, 50, 60]

count: Counts the occurrences of specified elements, similar to the count method for
strings.

l = [10, 20, 30, 40, 10]

l.count(10) # Outputs 2, as there are two occurrences of 10.

index: Outputs the index of the first occurrence of a specified value, similar to the index
method for strings.

l = [10, 20, 30, 40, 50]

l.index(30) # Outputs 2, as 30 is at index 2.

insert: Inserts a specified value at a specified position.

l = [10, 20, 30, 40, 50]

l.insert(2, 1000) # Inserts 1000 at index 2.

l # [10, 20, 1000, 30, 40, 50]

pop: Removes and returns the last element.

l = [10, 20, 30, 40, 50]

l.pop() # 50

l # [10, 20, 30, 40]

remove: Removes the first occurrence of a specified value.

l = [10, 20, 30, 40, 50]

l.remove(30) # Removes the value 30.

l # [10, 20, 40, 50]

reverse: Reverses the order of elements.

053

Is This a Bank or a Fish Market? 5

l = [10, 20, 30, 40, 50]

l.reverse()

l # [50, 40, 30, 20, 10]

sort: Sorts the elements in ascending order.

l = [20, 30, 10, 40, 50]

l.sort()

l # [10, 20, 30, 40, 50]

3.2 Built-in Functions
Built-in functions are functions that we use without declaring. For example, print , dir , and
type are all built-in functions. You can view the list of built-in functions on the official website
below. You can also search for Python built-in functions on Google.

Built-in Functions

The Python interpreter has a number of functions and types built into it that
are always available. They are listed here in alphabetical order.,,,, Built-in
Functions,,, A, abs(), aiter(), all(), a...

https://docs.python.org/3/library/functions.html

Among them, we will use min , max , and sum functions. As the names suggest, these functions
output the minimum, maximum, and sum values, respectively.

l = [10, 20, 30, 40, 50]

print(min(l)) # 10

print(max(l)) # 50

print(sum(l)) # 150

3.3 Solution

We need to create lists for sales and days of the week, then pick up items while moving and
add the items obtained to the end of the sales list. Then write a code to reset the picked-up
items.

Before After

054

Is This a Bank or a Fish Market? 6

mission_start()

sales = []

days_of_week = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']

repeat(2, pick)

sales.append(item()['goldbar']*100000)

item()['goldbar'] = 0

move()

mission_end()

First, pick up two items below and put the sales amount in the sales list. The sales amount is
calculated by multiplying the number of items by the value of the picked up items. This is
because the types of obtained items are not all 'goldbar'. It needs to be converted to values so
that min , max , and sum functions can be used.

Use this code to calculate the sales amounts for Monday, Tuesday, Wednesday, Thursday, and
Friday.

mission_start()

sales = []

days_of_week = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']

repeat(2, pick)

sales.append(item()['goldbar']*100000)

item()['goldbar'] = 0

move()

repeat(2, pick)

sales.append(item()['goldbar']*100000)

item()['goldbar'] = 0

move()

repeat(5, pick)

sales.append(item()['goldbar']*100000)

item()['goldbar'] = 0

move()

repeat(1, pick)

sales.append(item()['goldbar']*100000)

055

Is This a Bank or a Fish Market? 7

item()['goldbar'] = 0

move()

repeat(15, pick)

sales.append(item()['fish-3']*3000)

item()['fish-3'] = 0

mission_end()

Now, print the sales amounts as follows:

sales

You can find the minimum amount in the sales amounts as shown below:

print(f'Minimum sales: {min(sales)}')

Event days and days off cannot be determined solely from the sales list; the days of the week
list needs to be used.

print(f'Event day: {days_of_week[sales.index(max(sales))]}')

print(f'Day off: {days_of_week[sales.index(min(sales))]}')

Note that in this example, the index() function is used to find the position of the highest value
in the sales amounts, and then this index is used for indexing the days of the week list. The
final output is from the days of the week list.

Although not directly used in this code, let's learn comparison operations in this chapter.
Comparison operations compare two values, and the result is represented as True or False .

x = 10

y = 3

print(x > y) # Is x greater than y? True

056

Is This a Bank or a Fish Market? 8

print(x >= y) # Is x greater than or equal to y? True

print(x < y) # Is x less than y? False

print(x <= y) # Is x less than or equal to y? False

print(x == y) # Is x equal to y? False

print(x != y) # Is x not equal to y? True

These values, represented as True or False , are called Boolean values.

x = True

print(type(x)) # <class 'bool'>

In this problem, you can compare as follows:

sales[0] > sales[1]

4. Answer Code
mission_start()

sales = []

days_of_week = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']

repeat(2, pick)

sales.append(item()['goldbar']*100000)

item()['goldbar'] = 0

move()

repeat(2, pick)

sales.append(item()['goldbar']*100000)

item()['goldbar'] = 0

move()

repeat(5, pick)

sales.append(item()['goldbar']*100000)

item()['goldbar'] = 0

move()

repeat(1, pick)

sales.append(item()['goldbar']*100000)

item()['goldbar'] = 0

move()

057

Is This a Bank or a Fish Market? 9

repeat(15, pick)

sales.append(item()['fish-3']*3000)

item()['fish-3'] = 0

print(f'Minimum sales: {min(sales)}')

print(f'Event day: {days_of_week[sales.index(max(sales))]}')

print(f'Day off: {days_of_week[sales.index(min(sales))]}')

058

Free Food Truck 1

Free Food Truck

1. Chapter Objectives
Conditional Statement : You can use if , elif , and else statements.

Logical Operation : You can perform and , or , and not operations.

2. Story
Licat has been secretly moving gold bars outside of Lion Town.

“They can buy snacks for 1 gold in Lion Town, but in Weniv World, 10
families can live with the money for 10 months, meow!”

He selected reliable employees and raised money with gold bars. And with the money, he’s
been running a food truck for a long time.

"I'll take care of the food, meow! So don't worry about what to eat, what
to wear, and where to sleep. Spend time for bigger value, meow!"

Most didn't know who ran the food truck, but many thanked for it. As time passed, some of
them figured out who was running the food truck and secretly followed Licat.

Among them, Hati had been watching the food truck coming to the village where she was born
for a long time.

Working as a spy on CatsFish market, she could find out who was running a food truck. Even
though she was a spy, she became swayed by his sincerity.

1. Chapter Objectives

2. Story

2.1 Mission

2.1.1 Basic Code

2.2 Hints

3. Solution

3.1 Conditional Statement

3.2 Solution

4. Answer Code

059

Free Food Truck 2

2.1 Mission
If there are 10 or more fish-1 and 10 or more gold bars, Licat enters the space (1, 4), puts a
fish-1, and says that he is running a food truck.

Otherwise, he should say that the food truck is not running in the space (1, 4). Both conditions
must be satisfied.

2.1.1 Basic Code

if condition:

 say('We are running a food truck!')

else:

 say('We are not running a food truck!')

2.2 Hints
Complete the mission by combining the codes below.

mission_start()

mission_end()

True and False

True or False

10 > 5 and False

move()

repeat(2, move)

pick()

say('hello world!')

show_item()

show_item()['fish-1']

10 > 20

30 < 10

10 >= 5

3 == 3

3 != 5

5 <= 10

060

Free Food Truck 3

3. Solution

3.1 Conditional Statement
A conditional statement is used to execute the code within the if block when the specified
condition is True .

print('start')

if True:

 print('hello')

 print('hello')

 print('hello')

print('end')

The code block's scope can be verified by clicking the square button above. The folded area
belongs to the range of the if statement, indicated by an indentation of 4 spaces.

Let's see each result when the condition of the if statement is True and False .

start

hello

hello

hello

end

start

end

When the if statement is False , the code inside the else statement is executed. Here is an
example:

061

Free Food Truck 4

print('start')

if True:

 print('hello')

else:

 print('world')

print('end')

In this code, if the condition after the if statement is True , it prints 'hello', otherwise, it prints
'world'. While the if statement can be used independently, the else statement cannot stand
alone. In addition to if and else , there is also elif in conditional statements.

x = 10

if x > 10:

 print('x is greater than 10')

elif x == 10:

 print('x is 10')

else:

 print('x is less than 10')

elif is a shorthand for else if . It is executed if the previous condition is False and the
subsequent condition is True . Multiple elif statements can be used as shown below.

x = 76

if x >= 90:

 print('A')

elif x >= 80:

 print('B')

elif x >= 70:

 print('C')

else:

 print('D')

Here, the code will sequentially check if the conditional statement is True or False . In the first
if statement, it moves to the next code since x is not greater than or equal to 90. In the first
elif statement, it moves to the next code again since x is not greater than or equal to 80. In
the next elif statement, x is greater than or equal to 70, so it prints 'C' and does not proceed
to the else statement. This is because a True condition has already been found.

Logical operations may seem unfamiliar, but they are essential concepts in computer science.
Therefore, it is recommended to practice and summarize them as shown below:

True is 1, False is 0

'and' is multiplication, 'or' is addition

062

Free Food Truck 5

'not' is negation

True and False # First example

True or False # Second example

True or True # Third example

not True # Fourth example

In the first example, True and False is equivalent to 1 multiplied by 0. Since it is a multiplication,
if either one is 0, the result will be 0. Therefore, the and operation returns False if either is
False .

In the second example, True or False is equivalent to 1 plus 0. Since it is an addition, if either
one is 1, the result will be 1 or more. Therefore, the or operation returns True if either is
True .

The third example results in 1 plus 1, and any number other than 0 is considered True .

In the fourth example, not True returns False , and not False returns True .

Here used addition and multiplication to simplify the explanation. However, in actual Python,
the interpreter does not work in this way but evaluates statements. For example, if False is
encountered first, and and operator follows, the subsequent statement is not evaluated and
False is returned.

3.2 Solution
Our mission is as follows: to pick up all the items, open the door, enter, place one fish, and
then say whether to operate a food truck.

First, move forward and pick up all the items.

mission_start()

move()

repeat(12, pick)

move()

repeat(15, pick)

Before After

063

Free Food Truck 6

mission_end()

Then move to the door.

mission_start()

repeat(3, turn_left)

move()

turn_left()

move()

mission_end()

Licat moves to open the door and sees if there are 10 or more fish-1 and 10 or more gold bars.
If there are, he puts down one fish-1 and says "We are running a food truck!" Otherwise, say
"We are not running a food truck!”

mission_start()

open_door()

move()

if item()['fish-1'] >= 10 and item()['goldbar'] >= 10:

 put('fish-1')

 say("We are running a food truck!")

else:

 say("We are not running a food truck!")

mission_end()

What if the condition is or instead of and ? In that case, the food truck will run if either
condition is satisfied.

4. Answer Code
Initialize the world and execute the code below.

mission_start()

move()

repeat(12, pick)

move()

064

Free Food Truck 7

repeat(15, pick)

repeat(3, turn_left)

move()

turn_left()

move()

open_door()

move()

if(item()['fish-1'] >= 10 and item()['goldbar'] >= 10):

 put('fish-1')

 say('We are running a food truck!')

else:

 say('We are not running a food truck!')

mission_end()

mission_start()

move()

repeat(12, pick)

move()

repeat(15, pick)

repeat(3, turn_left)

move()

turn_left()

move()

open_door()

move()

if item()['fish-1'] >= 10 or item()['goldbar'] >= 10:

 put('fish-1')

 say("We are running a food truck!")

else:

 say("We are not running a food truck!")

mission_end()

065

Warehouse Integration 1

Warehouse Integration

1. Chapter Objectives
List : You can retrieve values and modify them using list indexing.

Arithmetic Operation : You can perform arithmetic operations.

Iteration Statement : You can use for and while loops.

Type Casting : You can change the data type using int , str , float , etc.

2. Story
Pika is a strategist. With much experience in launching services, Pika is taking care of all plans
at CatsFish Inc.

The warehouse of CatsFish is full, and there is no place to store fish anymore. Therefore, Pika
wants to build a large warehouse to store fish. The problem is how many floors the warehouse
should have.

"Oh, this should be fun."

Pika likes challenging plans. He plans to calculate the growth rate of CatsFish and build a
warehouse that is 10 times the total number of fish in the warehouse.

Each new floor of the warehouse will be able to store 100 fish. Help Pika calculate how many
floors of the warehouse are needed and output the result to the terminal.

1. Chapter Objectives

2. Story

2.1 Mission

2.1.1 Basic Code

2.2 Hints

3. Solution

3.1 Iteration Statements

3.1.1 For Loops

3.1.2 While Loops

3.2 Type Casting

3.3 Solution

4. Answer Code

066

Warehouse Integration 2

2.1 Mission
Each line represents one warehouse. From right to left, it stands for fish in the ones place,
tens place, and hundreds place. For example, if there are 2 fish at (0, 3) and 4 fish at (0, 4),
the warehouse has a total of 24 fish.

The new warehouse needs to be built to hold 10 times the fish in the warehouse, so we need a
warehouse that can store 240 fish. Since each floor can store 100 fish, a total of 3 floors are
needed.

Put all the fish in the warehouse into a list and output to the terminal how many floors of the
warehouse need to be built.

2.1.1 Basic Code

l = [0, 0, 0, 0] # [Thousands place, Hundreds place, Tens place, O

nes place]

for i in l:

 print(i)

2.2 Hints
Complete the mission by combining the codes below.

mission_start()

mission_end()

move()

repeat(2, move)

pick()

print('hello world!')

show_item()

show_item()['fish-1']

10 + 10

10 * 3

10 // 3

067

Warehouse Integration 3

10 >= 20

30 < 10

3. Solution

3.1 Iteration Statements
Iteration statements refer to repeating a specific code for a desired number of times. In
Python, there are two types of iteration statements: for loops and while loops.

3.1.1 For Loops
A for loop is a way to iterate through elements in an iterable. Let's look at an example:

The syntax is as follows:

for variable in iterable:

 code_to_repeat

In the example below, the variable is 'i', and the iterable is the string 'hello'. Similar to an if
statement, you can collapse the range of the for loop by using the button in the left corner.
The scope of the for loop is indicated by an indentation of 4 spaces.

print('Start of loop')

for i in 'hello':

 print(i)

print('End of loop')

Start of loop

h

e

l

l

o

End of loop

068

Warehouse Integration 4

Here, if you add 4 spaces preceding print('End of loop') , output is like below. Make sure to
keep the correct indentation to avoid unintended repetitions of code.

print('Start of loop')

for i in 'hello':

 print(i)

 print('End of loop')

Start of loop

h

End of loop

e

End of loop

l

End of loop

l

End of loop

o

End of loop

Iterable elements are not limited to strings. Lists and dictionaries, which we learned in previous
chapters, can also be used. Integer and float types are not iterable.

An example below is iterating elements in a list. It prints until the end of the elements and
terminates the loop.

print('Start of loop')

for i in [10, 20, 30]:

 print(i)

print('End of loop')

Start of loop

10

20

30

End of loop

The next example demonstrates iterating over a dictionary. In the loop, it iterates through each
key in the dictionary. Similarly, the loop stops after printing the last element.

print('Start of loop')

for i in {'one': 1, 'two':

2}:

 print(i)

print('End of loop')

Start of loop

one

two

End of loop

If you want a simple repetition and not iterate over any specific data type, you can use range .
range helps to iterate a specified number of times. We won't cover all the forms of range in
this tutorial.

069

Warehouse Integration 5

print('Start of loop')

for i in range(3):

 print(i) # Repeated 3 ti

mes.

print('End of loop')

Start of loop

0

1

2

End of loop

3.1.2 While Loops
while loops provide a more intuitive way to iterate. They repeat a block of code as long as the
specified condition is True .

print('Start of loop')

count = 0

while count < 5:

 print(count)

 count = count + 1

print('End of loop')

Start of loop

0

1

2

3

4

End of loop

In the above example, without the count = count + 1 code, it would be an infinite loop. Be sure
to explicitly state the condition for exiting the loop. You can also use break to exit the loop:

print('Start of loop')

count = 0

while True:

 print(count)

 if count == 3:

 break

 count = count + 1

print('End of loop')

Start of loop

0

1

2

3

4

End of loop

3.2 Type Casting
Type casting refers to the process of converting a variable from one data type to another. Let's
go through an example:

'10' + '10'

This above operation concatenates two strings. Therefore, the output is '1010'.

070

Warehouse Integration 6

int('10') + int('10')

The above operation is converting the strings into integers before addition. It results in
numerical addition, so the output is 20.

In Python, type casting functions like int() , float() , str() , list() , and dict() are used to
convert one type to another.

3.3 Solution

First, create a list to input each place value.

l = [0, 0, 0, 0]

Move forward and pick up items. During this process, update the list with the number of picked
items in the corresponding positions, and always reset the value of the picked fish.

mission_start()

Code for picking up fish

repeat(3, move)

repeat(1, pick)

l[2] = item()['fish-1']

item()['fish-1'] = 0

move()

repeat(1, pick)

l[3] = item()['fish-1']

Before After

071

Warehouse Integration 7

item()['fish-1'] = 0

mission_end()

After picking up all the fish in the first row, the list l becomes [0, 0, 1, 1] , and it should be
perceived as a total of 11 fish later. Now that all the fish are picked, it's time to turn around and
come out.

mission_start()

Code for turning around and coming out

repeat(2, turn_left)

repeat(4, move)

turn_left()

move()

turn_left()

mission_end()

After performing this process 5 times, all the fish on every floor will be caught. If you print the
fish that have been caught, the output result will be as follows:

print(l) # [0, 1, 16, 7]

There is 16 in the tens place without any carryover. In the following code, each digit is
multiplied by the corresponding place value (thousands, hundreds, tens, ones), and the results
are added to calculate the final value.

fish_count = 0

m = 1000

fish_count = fish_count + l[0] * m # Thousands place

m = 100

fish_count = fish_count + l[1] * m # Hundreds place

m = 10

fish_count = fish_count + l[2] * m # Tens place

m = 1

fish_count = fish_count + l[3] * m # Ones place

print(fish_count) # 267

You can simplify it using a loop:

fish_count = 0

m = 1000

072

Warehouse Integration 8

for i in range(4):

 fish_count = fish_count + l[i] * m

 m = m / 10

print(fish_count)

It was mentioned that one floor is built for every 100 fish. Therefore, if the summed value was
270, you need to multiply it by 10 and divide by 100, which results in building 27 floors. You
need to add 1 floor if it is not divisible by 100. For example, if there were 271 fish, you need to
build 28 floors.

if (fish_count * 10) % 100 == 0:

 print(int(fish_count * 10) / 100)

else:

 print(int((fish_count * 10) / 100 + 1))

Alternatively, you can use double slashes to ensure integer division from the beginning.

if (fish_count * 10) % 100 == 0:

 print((fish_count * 10) // 100)

else:

 print((fish_count * 10) // 100 + 1)

4. Answer Code
Initialize the world and execute the code below.

mission_start()

l = [0, 0, 0, 0]

Code for picking up fish

repeat(3, move)

repeat(1, pick)

l[2] = item()['fish-1']

item()['fish-1'] = 0

move()

repeat(1, pick)

l[3] = item()['fish-1']

item()['fish-1'] = 0

Code for turning around and coming out

073

Warehouse Integration 9

repeat(2, turn_left)

repeat(4, move)

turn_left()

move()

turn_left()

Code for picking up fish

repeat(3, move)

repeat(2, pick)

l[2] = l[2] + item()['fish-1']

item()['fish-1'] = 0

move()

repeat(3, pick)

l[3] = l[3] + item()['fish-1']

item()['fish-1'] = 0

Code for turning around and coming out

repeat(2, turn_left)

repeat(4, move)

turn_left()

move()

turn_left()

Code for picking up fish

repeat(3, move)

repeat(3, pick)

l[2] = l[2] + item()['fish-1']

item()['fish-1'] = 0

move()

repeat(1, pick)

l[3] = l[3] + item()['fish-1']

item()['fish-1'] = 0

Code for turning around and coming out

repeat(2, turn_left)

repeat(4, move)

turn_left()

move()

turn_left()

Code for picking up fish

074

Warehouse Integration 10

repeat(3, move)

repeat(8, pick)

l[2] = l[2] + item()['fish-1']

item()['fish-1'] = 0

move()

repeat(1, pick)

l[3] = l[3] + item()['fish-1']

item()['fish-1'] = 0

Code for turning around and coming out

repeat(2, turn_left)

repeat(4, move)

turn_left()

move()

turn_left()

Code for picking up fish

repeat(2, move)

repeat(1, pick)

l[1] = l[1] + item()['fish-1']

item()['fish-1'] = 0

move()

repeat(2, pick)

l[2] = l[2] + item()['fish-1']

item()['fish-1'] = 0

move()

repeat(1, pick)

l[3] = l[3] + item()['fish-1']

item()['fish-1'] = 0

Code for turning around and coming out

repeat(2, turn_left)

repeat(4, move)

turn_left()

fish_count = 0

m = 1000

fish_count = fish_count + l[0] * m # Thousands place

m = 100

fish_count = fish_count + l[1] * m # Hundreds place

075

Warehouse Integration 11

m = 10

fish_count = fish_count + l[2] * m # Tens place

m = 1

fish_count = fish_count + l[3] * m # Ones place

print(int(fish_count)) # Number of caught fish

if (fish_count * 10) % 100 == 0:

 print(int((fish_count * 10) / 100))

else:

 print(int((fish_count * 10) / 100 + 1))

mission_end()

076

Let’s Automate! 1

Let’s Automate!

1. Chapter Objectives
Function : You can define and utilize functions.

2. Story
Licat's fish company has become the fastest-growing distribution company in the entire Weniv
World. However, employees became tired of simple and repetitive work.

"Can't we guarantee autonomy and creative thinking, personal growth,
and clear purpose and motivation for each task?"

Licat analyzed each employee's work to see which tasks they spent the most time on. It was
fishing, packaging, and delivery which are the simplest and most repetitive tasks.
The next day, Licat said at the meeting:

"Let's adopt robots to replace repetitive tasks! Then we can focus more
on creative work, meow!”

However, employees who were already filled with discontent were skeptical about this idea.

"So who's going to make it!? Is CEO?!”

"I already made it! So let's take this robot and install it, meow!”

2.1 Mission

1. Chapter Objectives

2. Story

2.1 Mission

Basic Code

2.2 Hints

3. Solution

3.1 Functions

3.2 Solution

4. Answer Code

077

Let’s Automate! 2

Create a function that automatically catches fish and delivers them. You need to fill in the pass
part in the basic code below.
The function should perform the following: pick up the fish, go up to the top, and say in the
form of
Completed delivery: 3 for each column.

Basic Code

def delivery():

 pass

repeat(4, delivery)

2.2 Hints
Complete the mission by combining the codes below.

mission_start()

mission_end()

move()

turn_left()

repeat(2, move)

pick()

put('fish-1')

078

Let’s Automate! 3

print('hello world!')

front_is_clear()

left_is_clear()

right_is_clear()

3. Solution

3.1 Functions
Functions allow you to reuse code and create a more organized structure for better readability.
Let's check with the following code:

def hello(): # Function definition

 print('hello') # Code inside the function

 print('world')

hello() # Function call

When executed like above, Python reads only the function definition and moves on. It doesn't
read the code inside the function. When the function is called, Python goes back up, reads,
and executes the code inside the function. This way, you can use hello() anywhere to print
'hello' and 'world' whenever needed.

Let's create a simple function for addition. When you run the code below, it will output 30. The
return literally signifies what the function will return. The returned value will be placed where
the function was called. In this case, 10 and 20 go into a and b respectively, and a plus b is
30, so 30 goes into the place where add(10, 20) was.

def add(a, b): # Function definition

 return a + b # Code inside the function

add(10, 20) # Function call

Here’s another example:

def add(a, b): # Function definition

 return a + b # Code inside the function

print(add(10, 20) + add(30, 20) + 30)

add(10, 20) will have its return value of 30, and add(30, 20) will have its return value of 50, so
110 will be output. The results are as follows.

079

Let’s Automate! 4

print(add(10, 20) + add(30, 20) + 30)

print(30 + 50 + 30)

Here, a and b are called parameters, and the actual values you put, such as 10 and 20, are
called arguments.

3.2 Solution

def delivery():

 pass

repeat(4, delivery)

When looking at the basic code, it is defined to repeat the function four times. However, the
same action must be repeated five times as there are five columns. So let's modify it to 5 as
shown below:

def delivery():

 pass

repeat(5, delivery)

Now, it's time to think about what to do inside the delivery function. Licat should turn right,
pick up all the items below, turn back, and come up to the top again, and finally shout out that
the delivery is done. This can be expressed in code as follows. Let's write the code first without
using a function:

Before

After

080

Let’s Automate! 5

while not on_item():

 move()

The above code moves Licat forward until there is an item below using on_item() . It returns
True if there is an item, and False if there isn't.

while on_item():

 pick()

The above code continuously picks up items as long as there is an item below. By using these
two codes, you can move to where the items are and pick up all the items below.

Now, you need to turn back and go up to the top. This can be written as follows:

repeat(2, turn_left)

while front_is_clear():

 move()

The above code turns back Licat and moves him up to the top. front_is_clear() returns True if
the front is empty, and False otherwise. It moves only when the front is empty, so Licat can
reach the top.

Now, you just need to print how many fish you've picked up and initialize the count:

say(f'Completed delivery: {item()["fish-1"]}')

item()["fish-1"] = 0

Wrap the above actions in a function to repeat it five times. You should add the following code
not to move to the next cell at the very end.

if front_is_clear():

 move()

4. Answer Code
Initialize the world and execute the code below.

mission_start()

def delivery():

 repeat(3, turn_left)

 while not on_item():

 move()

081

Let’s Automate! 6

 while on_item():

 pick()

 repeat(2, turn_left)

 while front_is_clear():

 move()

 say(f'Completed delivery: {item()["fish-1"]}')

 item()["fish-1"] = 0

 repeat(3, turn_left)

 if front_is_clear():

 move()

repeat(5, delivery)

mission_end()

082

Let’s Clean up and Organize! 1

Let’s Clean up and Organize!

The last problem, "Hospital Establishment," does not have a solution provided. This
problem's solution serves as the final one. Try solving the "Hospital Establishment"
problem by applying the concepts you've learned so far.

1. Chapter Objectives
Dictionary : You can understand the dictionary data type and extract values using keys.

2. Story
As the company grew, Licat was worn out from the busy management and heavy
responsibilities.

“Every day is so exhausting. Do I have to do this much? Why do I work
and what more can I do in the future?”

With these various thoughts still unorganized, Licat went to CatsFish market and started to
clean it.

The market was scattered with gold bars and fish. The more he cleaned, the more he could
clear his mind.

Letting thoughts just go and focusing on simple tasks, only important things remained and the
things had somehow simplified.

2.1. Mission

1. Chapter Objectives

2. Story

2.1. Mission

Basic Code

2.2. Hints

3. Solution

3.1 Dictionary get()

3.2 Solution

4. Answer Code

083

Let’s Clean up and Organize! 2

Create the following dictionary and write a code to print the number of gold bars and the
number of fish in the terminal.

Basic Code

d = {'goldbar': 0, 'fish': 0}

2.2. Hints
Complete the mission by combining the codes below.

d['goldbar'] = d['goldbar'] + 1

move()

turn_left()

repeat(2, move)

pick()

print('hello world!')

front_is_clear()

084

Let’s Clean up and Organize! 3

left_is_clear()

right_is_clear()

3. Solution

3.1 Dictionary get()
There is a method called get in dictionary. You can print the list of methods using dir . Using
get allows us to extract items more safely. Let's look at the example below.

d = {'one': 1, 'two': 2}

d['three']

In the above code, it will output KeyError: 'three' since the dictionary d does not have the key
'three'. To avoid printing an error when the key is not present and instead print a predefined
value, you can use get .

d = {'one': 1, 'two': 2}

d.get('three', 'No Value')

The above code will output 'No Value.' If you want to output 0 instead, you can modify the
code as follows.

d = {'one': 1, 'two': 2}

d.get('three', 0)

3.2 Solution

Before After

085

Let’s Clean up and Organize! 4

First, let’s create a function that picks up items as long as there are items below and moves to
empty spaces continuously .

def moving():

 while True:

 if on_item():

 pick()

 if front_is_clear():

 move()

 elif right_is_clear():

 repeat(3, turn_left)

 move()

 elif left_is_clear():

 turn_left()

 move()

 else:

 break

Since the code above has an infinite loop due to while True , it repeats until the front and both
sides are blocked. If both the front and sides are blocked, it breaks out of the infinite loop using
the break statement.

Now, use the declared function to pick up all items.

mission_start()

result = {'goldbar': 0, 'fish': 0}

def moving():

 while True:

 if on_item():

 pick()

 if front_is_clear():

 move()

 elif right_is_clear():

 repeat(3, turn_left)

 move()

 elif left_is_clear():

 turn_left()

 move()

 else:

 break

moving()

086

Let’s Clean up and Organize! 5

mission_end()

Then we need to write a code to organize and put them into gold bars and fish in the
dictionary. fish-1, fish-2, and fish-3 should all be contained in the fish of the result.

result['fish'] += item().get('fish-1', 0)

result['fish'] += item().get('fish-2', 0)

result['fish'] += item().get('fish-3', 0)

result['goldbar'] += item().get('goldbar', 0)

Now, all that's left is to print the result.

print(f'There are {result["goldbar"]} gold bars. There are {result

["fish"]} fish.')

4. Answer Code
Initialize the world and execute the code below.

mission_start()

result = {'goldbar': 0, 'fish': 0}

def moving():

 while True:

 if on_item():

 pick()

 if front_is_clear():

 move()

 elif right_is_clear():

 repeat(3, turn_left)

 move()

 elif left_is_clear():

 turn_left()

 move()

 else:

 break

moving()

result['fish'] += item().get('fish-1', 0)

result['fish'] += item().get('fish-2', 0)

result['fish'] += item().get('fish-3', 0)

result['goldbar'] += item().get('goldbar', 0)

087

Let’s Clean up and Organize! 6

print(f'There are {result["goldbar"]} gold bars. There are {result

["fish"]} fish.')

mission_end()

088

Appendix

089

Command Dictionary 1

Command Dictionary

Function List
mission_start() : indicates the start of the mission

mission_end() : indicates the end of the mission

print() : outputs results to the terminal

say() : displays text in a speech bubble

item() : returns the item held by the character

on_item() : returns whether there is an item under the character

directions() : returns the direction the character is facing

move() : moves the character one space in the direction he is facing

turn_left() : rotates the character to the left(counterclockwise)

pick() : picks up items under the character

put(item) : places an item(item) under the character if he has the item

repeat(count , function) : repeats the function(function) count times

open_door() : removes the wall(door) if there is a wall in the character’s movement
direction

set_item(x , y , item , count) : places the specified quantity(count) of items(item) at the
coordinates (x, y) on the map

Available item types:

fish-1

fish-2

fish-3

diamond

apple

goldbar

Function List

Variable List

090

Command Dictionary 2

[front | left | right | back]_is_clear() : determines whether there is a wall in [front |
left | right | behind] of the character

typeof_wall() : returns the type of wall in the character’s movement direction

turn_right() : (from modules import turn_right) rotates the character to the right

turn_around() : (from modules import turn_around) rotates the character to the opposite
direction

move_to_wall() : (from modules import move_to_wall) moves until there’s a wall

turn_left_until_clear() : (from modules import turn_left_until_clear) rotates left until the
path is clear

jump() : (from modules import jump) jumps over a block even when there is an obstacle

Variable List
character_data : shows character information such as location, direction, items, and hp

map_data : shows the size of the map

item_data : shows information about the items placed on the map

wall_data['world'] : shows information about the walls placed on the map

091

Bibliographic Data

Bibliographic Data
[E-book] Weniv World(Teacher’s Edition) - Game-based Python Education Platform

First Edition 2024. 01. 22

Author Weniv Inc.

Editor Kyungrim Cha

Chief Editor Hojun Lee

Published by 사도출판

Address 137, Donggwang-ro, Jeju-si, Jeju-do, Republic of Korea

Website http://www.paullab.co.kr

E-mail paul-lab@naver.com

ISBN 979-11-88786-92-3(PDF)

Copyright ⓒ 2023 by. 사도출판

The copyright of this book belongs to Sado Publishing. As a copyrighted work
protected by copyright law, unauthorized reproduction and unauthorized distribution
are prohibited. If you have any comments on this book or information regarding
typos and corrections to incorrect content, please contact Sado Publishing via email.

https://world.weniv.co.kr/

	Contents
	Introduction
	About Us
	Preface
	About Platform

	Weniv World Adventure
	Cat’s Resolution
	Advent of Licat
	Licat Heading to Skull Island
	Amazing Taste!
	Employee Promotion
	Is This a Bank or a Fish Market?
	Free Food Truck
	Warehouse Integration
	Let’s Automate!
	Let’s Clean up and Organize!

	Appendix
	Command Dictionary

